Day 02

Introduction to manipulator kinematics

Robotic Manipulators

- a robotic manipulator is a kinematic chain
- i.e. an assembly of pairs of rigid bodies that can move respect to one another via a mechanical constraint
- the rigid bodies are called links
- the mechanical constraints are called joints

A150 Robotic Arm

Joints

- most manipulator joints are one of two types

।. revolute (or rotary)
like a hinge
allows relative rotation about a fixed axis between two links axis of rotation is the z axis by convention
prismatic (or linear)
like a piston
allows relative translation along a fixed axis between two links axis of translation is the z axis by convention
our convention: joint i connects link $i-1$ to link i
when joint i is actuated, link i moves

Joint Variables

revolute and prismatic joints are one degree of freedom (DOF) joints; thus, they can be described using a single numeric value called a joint variable
q_{i} : joint variable for joint i
revolute
$q_{i}=\theta_{i}$: angle of rotation of link i relative to link $i-1$
2. prismatic
$q_{i}=d_{i}:$ displacement of link i relative to link $i-1$

Revolute Joint Variable

revolute

$$
q_{i}=\theta_{i}: \text { angle of rotation of link } i \text { relative to link } i-1
$$

Prismatic Joint Variable

prismatic

$$
q_{i}=d_{i}: \text { displacement of link } i \text { relative to link } i-1
$$

Common Manipulator Arrangments

- most industrial manipulators have six or fewer joints
> the first three joints are the arm
b the remaining joints are the wrist
- it is common to describe such manipulators using the joints of the arm
- R: revolute joint
- P: prismatic joint

Articulated Manipulator

RRR (first three joints are all revolute)

- joint axes
b z_{0} : waist
- z_{1} : shoulder (perpendicular to z_{0})

Spherical Manipulator

- RRP
- Stanford arm
- http://infolab.stanford.edu/pub/voy/museum/pictures/display/robots/IMG_2404ArmFrontPeekingOut.JPG

SCARA Manipulator

- RRP
- Selective Compliant Articulated Robot for Assembly
- http://www.robots.epson.com/products/g-series.htm

Forward Kinematics

given the joint variables and dimensions of the links what is the position and orientation of the end effector?

Forward Kinematics

- choose the base coordinate frame of the robot
* we want (x, y) to be expressed in this frame

Forward Kinematics

notice that link 1 moves in a circle centered on the base frame origin

Forward Kinematics

- choose a coordinate frame with origin located on joint 2 with the same orientation as the base frame

Forward Kinematics

notice that link 2 moves in a circle centered on frame 1

Forward Kinematics

- because the base frame and frame 1 have the same orientation, we can sum the coordinates to find the position of the end effector in the base frame $\quad\left(a_{1} \cos \theta_{1}+a_{2} \cos \left(\theta_{1}+\theta_{2}\right)\right.$,

$$
\left.a_{1} \sin \theta_{1}+a_{2} \sin \left(\theta_{1}+\theta_{2}\right)\right)
$$

Forward Kinematics

- we also want the orientation of frame 2 with respect to the base frame
b x_{2} and y_{2} expressed in terms of x_{0} and y_{0}

Forward Kinematics

without proof I claim:

$$
\begin{aligned}
x_{2}= & \left(\cos \left(\theta_{1}+\theta_{2}\right),\right. \\
& \left.\sin \left(\theta_{1}+\theta_{2}\right)\right) \\
y_{2}= & \left(-\sin \left(\theta_{1}+\theta_{2}\right),\right. \\
& \left.\cos \left(\theta_{1}+\theta_{2}\right)\right)
\end{aligned}
$$

Inverse Kinematics

given the position (and possibly the orientation) of the end effector, and the dimensions of the links, what are the joint variables?

Inverse Kinematics

harder than forward kinematics because there is often more than one possible solution

Inverse Kinematics

law of cosines

$$
b^{2}=a_{1}^{2}+a_{2}^{2}-2 a_{1} a_{2} \cos \left(\pi-\theta_{2}\right)=x^{2}+y^{2}
$$

Inverse Kinematics

$$
-\cos \left(\pi-\theta_{2}\right)=\frac{x^{2}+y^{2}-a_{1}^{2}-a_{2}^{2}}{2 a_{1} a_{2}}
$$

and we have the trigonometric identity

$$
-\cos \left(\pi-\theta_{2}\right)=\cos \left(\theta_{2}\right)
$$

therefore,

$$
\cos \theta_{2}=\frac{x^{2}+y^{2}-a_{1}^{2}-a_{2}^{2}}{2 a_{1} a_{2}}=C_{2}
$$

We could take the inverse cosine, but this gives only one of the two solutions.

Inverse Kinematics

Instead, use the two trigonometric identities:

$$
\sin ^{2} \theta+\cos ^{2} \theta_{2}=1 \quad \tan \theta=\frac{\sin \theta}{\cos \theta}
$$

to obtain

$$
\theta_{2}=\tan ^{-1} \frac{ \pm \sqrt{1-C_{2}^{2}}}{C_{2}}
$$

which yields both solutions for θ_{2}. In many programming languages you would use the four quadrant inverse tangent function atan2

```
c2 = (x*x + y*y - a1*a1 - a2*a2) / (2*a1*a2);
s2 = sqrt(1 - c2*c2);
theta21 = atan2(s2, c2);
theta22 = atan2(-s2, c2);
```


Inverse Kinematics

Exercise for the student: show that

$$
\theta_{1}=\tan ^{-1}\left(\frac{y}{x}\right)-\tan ^{-1}\left(\frac{a_{2} \sin \theta_{2}}{a_{1}+a_{2} \cos \theta_{2}}\right)
$$

